Diese Dissertation untersucht Text-Mining in produzierenden Unternehmen. Trotz seines Potenzials ist Text-Mining in dieser Branche bisher weitgehend ungenutzt geblieben, hauptsächlich aufgrund fehlender interner Fähigkeiten in Mathematik, Statistik und IT. Die Arbeit adressiert zwei zentrale Defizite: die Anforderungsdefinition und die Entwicklung von Text-Mining-Anwendungen. Ziel der Dissertation ist es, diese Defizite zu beheben, indem sie Fachbereiche in der Konzeptions- und Planungsphase unterstützt, aus generischen Anwendungsfällen Text-Mining-Funktionen und dafür relevante Methoden abzuleiten. Sieben Text-Mining-Anwendungsfälle wurden in produzierenden Unternehmen identifiziert und modelliert. Diese Anwendungsfälle umfassen 18 spezifische Text-Mining-Funktionen, die zu fünf abstrakten Text-Mining-Funktionen zusammengefasst wurden: Freitexteingabe unterstützen, Wissen bereitstellen, Information extrahieren, Stimmung bewerten und Text klassifizieren. Aktuelle Text-Mining-Methoden wurden in drei Phasen kategorisiert: Vorverarbeitung, Mining-Analyse und Ergebnisaufbereitung. Die Vorverarbeitung bereitet Texte für die Analyse vor, die Mining-Analyse umfasst Methoden wie Klassifikation und Clustering, und die Ergebnisaufbereitung visualisiert die Ergebnisse. Die Dissertation zeigt anschließend die Wirkungszusammenhänge zwischen den Text-Mining-Funktionen und -Methoden auf, was es produzierenden Unternehmen ermöglicht, geeignete Text-Mining-Methoden zu identifizieren und darauf aufbauend die notwendigen Fähigkeiten für Stellenausschreibungen und Bietergespräche zu definieren. Zwei Fallstudien evaluieren die Ergebnisse und zeigen, dass Text-Mining-Anwendungsfalldiagramme entscheidend zur Vermittlung und Nutzbarmachung von Text-Mining beitragen. Dadurch werden produzierende Unternehmen befähigt, die notwendigen Fähigkeitslücken für die Entwicklung von Text-Mining-Anwendungen zu schließen.
Schriftenreihe Rationalisierung
Text-Mining-Anwendungsfälle in produzierenden Unternehmen
Kurzbeschreibung
Die Dissertation untersucht den Einsatz von Text-Mining in produzierenden Unternehmen und adressiert fehlende Fähigkeiten sowie unklare Anforderungen. Sie identifiziert sieben Anwendungsfälle mit fünf übergeordneten Funktionen und kategorisiert relevante Methoden in drei Analysephasen. Ziel ist es, Unternehmen bei der Auswahl geeigneter Methoden und dem Aufbau nötiger Kompetenzen zu unterstützen. Zwei Fallstudien bestätigen den Nutzen von Anwendungsfalldiagrammen.